
 

 

Study of case control design and cohort design to determine the size of the 

samples according to the p-value, and confidence intervals 

 

Abstract 

In the introduction, we assume
 
familiarity with the basic ideas and interpretation of 

hypothesis tests, including the p-value, and confidence intervals. These concepts, while 

appealing, are surprisingly subtle and can be disturbingly misleading. Even the language we 

have just used to describe the interpretation of a p-value is somewhat sloppy and imprecise. 

While we cannot do justice to the literature surrounding these topics, there are a few 

comments worth noting, having encountered the first hypothesis test in the book. The
 
use of 

classical hypothesis testing, and associated p-values, has been roundly and deservingly 

criticized (Goodman and Royall, 1988). The p-value for a χ
2

 
test of independence does not 

represent the probability that the population Relative Risk is as far as or further from 

independence (RR=1) as the observed sample Relative Risk. The p-value is certainly not the 

probability of H0, given the data—this is almost the error of equating P(A|B)
 
with P(B|A).as 

the p-value depends rather on computing probabilities of possible observations, given H0. 

Further, the p-value takes no account of the power of the study
 
with regard to the hypothesis 

test, that is, the probability of accepting the null when it is actually false. Thus a small 

deviation from independence in a large study can have an identical p-value to a small study 

containing large deviations. In cynical moments, I find myself discarding a p-value as little 

more than an alternate measure of sample size since all null hypotheses will produce small p-

values so long as enough data are collected. How
 
should we then interpret the p-values we 

report here? We use them as informal measures of the compatibility
 
of the data with the null 

hypothesis in question. This does not evade the criticisms outlined, or others for that matter 

(Goodman and Royall, 1988), but it does reinforce that they cannot be treated in a formal 

manner and certainly should not be subject to an arbitrary cutoff value such as 0.05. In 

addition, p-values arise from calculations based on a null hypothesis that is unlikely to be 

exactly true. As such, p-values can only be considered as approximations. This is further 

supported by the fact that they usually do not account for sources of error beyond sampling 

variation, nor for the impact of multiple comparisons (performing many tests on the same set 

of data, an action rarely acknowledged in single p-value calculations).One way to minimize 

the use of p-values is to focus on estimation of effects, rather than testing null values. We 

begin to look at this more closely
 
in the next chapter. Uncertainty is often introduced into 

estimation through the use of confidence intervals. Although confidence intervals are subject 

to similar criticisms as p-values, they are better rough descriptors of the uncertainty involved 

in estimation because they avoid the more egregious misinterpretations associated with 

hypothesis testing, particular if more than one confidence level is used, as suggested in 

Chapter 3.3.Alternative inference procedures are available that should be given serious 

consideration. These include the use of likelihood intervals (see Chapter 13.1.1 for an 

introduction to the likelihood function) and Bayesian methods. A brief introduction to both of 

these techniques can be found in Clayton and Hills (1993). In light of
 
the above comments on 

p-values, it is interesting to note that p-values tend to overstate the evidence against the null 

hypothesis, as compared to likelihood or Bayesian intervals, particularly when the p-value is 

greater than 0.01 (Berger and Sellke, 1987).



 

Introduction 

1.1 Cohort designs 

The logic used with population-based designs to investigate independence of D and E is not 

appropriate for data from a cohort design since it is not possible to estimate joint or marginal 

probabilities with this design. For example, consider the data in Table 5.3. Here the sample 

sizes in the random samples of unmarried and married mothers are preselected by the 

investigator; thus, the observed marginal frequency of unmarried mothers tells you nothing 

about the population frequency of this characteristic. Indirectly, the choice of the two sample 

sizes also determines the marginal frequency of low-birth weight infants so that the data 

again do not provide information regarding the occurrence of low birth weights in the 

population. By the same token, joint probabilities such as the probability of being an 

unmarried mother with a low-birth weight infant cannot be estimated from cohort data. 

Nevertheless, it is still possible to investigate independence of D and E with cohort data 

through the equivalent formulation of independence as P(D|E)=P(D|not E). Both of these 

conditional probabilities are immediately estimable from the two distinct exposure category 

samples, and the issue of independence then simplifies to the comparison of two separate 

population proportions or probabilities. 

Specifically, we write the null hypothesis 
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For simplicity write p1=P(D|E) and p2=P(D|not E). Using the notation of Table 6.1, we 

estimate p1 and p2 by 

 

  

where n1 and n2 are the sample sizes of the E and samples, respectively. The two estimates 

and are random variables whose sampling distributions can be approximated by Normal 

distributions when both n1 and n2 are large. The expectation of the approximating Normal 

sampling distribution for is p1, with variance given by p1(1−p1)/n1, and an analogous result 

holds for the approximate Normal sampling distribution of Thus, the difference between 

the two estimates, has an approximate Normal sampling distribution with 

expectation p1−p2 and variance [p1(1−p1)/n1]+[p2(1−p2)/n2]. 

 



Now, if we assume the null hypothesis, that D and E are independent, is true, then P1=P2. We 

can then use the difference of our estimates, as a measure of the dependence of D 

and E. If D and E are independent—that is, H0 is true—then the parameters of the 

approximate Normal sampling distribution of simplify; its expectation is then 0 and 

its variance is given by p(1−p)[(1/n1)+(1/n2)], where p=p1=p2. The latter variance can be 

estimated by with the observed proportion of Ds in 

the whole sample. 

A reasonable test statistic is thus given by which is expected to follow a 

standard Normal sampling distribution if D and E are independent. If this statistic is large, 

there is evidence that D and E are associated. As before, “large” is interpreted in terms of the 

sampling distribution assuming independence. Alternatively, we can compute the square of 

this statistic, given by which is approximately under 

H0. 

Some simple algebra shows that this test statistic is, in fact, equivalent to the χ
2
 test statistic 

described in Section 6.1 for population-based data.  

   

Table 6.3 Possible data from a cohort study of a mother’s marital status and 

low birthweight 

    Birthweight   

    Low Normal   

Marital status at birth 
Unmarried 12 88 100 

Married 5 95 100 

    17 183 200 

Thus, 

 

  

as claimed. 

To illustrate the computation in this setting, we use the data of Table 5.3, repeated in Table 

6.3 for convenience, which yields the observed test statistic of 200(12×95− 

88×5)
2
/100×100×17×183−98,000,000/31,110,000−3.15, with an associated p-value of 0.08. 

 



1.2 Case-control designs 

As for cohort designs and for the same reasons, it is not possible to estimate either joint or 

marginal probabilities from a case-control design. Further, with case-control data, we cannot 

obtain information about the conditional disease proportions, P(D|E) and P(D|not E), either, 

since the disease frequencies in the data are determined by the sample sizes of cases and 

controls as pre-specified by the investigator. In fact, the only probabilities that are estimable 

are exposure probabilities, conditional on disease status; that is, Here H0, 

that D and E are independent, can then be given as an alternate 

specification of independence. Thus, in an analogous fashion to that used for cohort designs, 

we can assess the hypothesis of independence by comparing the observed sample frequency 

of exposed individuals among cases against that among controls. Using identical algebra to 

that used in Section 6.2, this comparison the yields the exact same χ
2
 statistic used to test 

independence in both population-based and cohort designs. In sum, although based on 

differing justifications, we see that the identical χ
2
 test of independence applies to each of the 

three designs we have considered.  

Using the data given in Table 5.4, repeated in Table 6.4 for convenience, we illustrate the by-

now familiar calculation of the χ
2
 statistic for case-control data. Here, the observed test 

statistic is given by 200(50×72−50×28)
2
/100×100×78×122 = 968,000,000/95,160,000=10.17. 

This is a very large value in terms of the distribution and yields a p-value of 0.002. Thus, 

the case-control data provides quite striking evidence that a mother’s marital status is related 

to the possibility of having a low-birthweight infant. In the next section, we explain the 

marked difference between the results of the χ
2
 test for data generated by each of the three 

design strategies applied to the same population and with the same sample size. 

1.2.1 Comparison of the study designs 

Table 6.5 summarizes the results of the χ
2
 test of independence on the data from Tables 6.2 to 

6.4. Note that the results of the three tests are not entirely incompatible with each other. 

However, while both the population-based and cohort data are merely suggestive of an 

association between a mother’s marital status and infant birthweight, the case-control data 

appear to provide sufficient evidence to reject the notion that these two factors are unrelated. 

The explanation of the differences between the designs can be found in terms of the power of 

the χ
2
 test, that is, the probability that the test will reject independence given a population 

association between the two factors of interest. Although we cast doubt on the value of 

hypothesis testing in Section 6.1.1, the power of the χ
2
 test remains a useful proxy for the 

amount of information in a data set regarding the question of independence of D and E. As 

with most hypothesis tests, the power of the χ
2
 test depends on the extent of the true unknown 

population association and the sample size. This does not explain the different results 

generated by the three study designs since these factors are the same in each case. 

Additional factors influence the power of the χ
2
 test, namely, the balance of the two marginal 

totals for D and E, respectively. First, let us compare the population-based and cohort 

designs. Recall that, for either design, the χ
2
 test is based on the (square of the) statistic 

where p1=P(D|E), and where n1 

and n2 are the sample sizes for the Es and Es, respectively. If the null hypothesis is false, then 

D and E are related, and p1−p2≠0. The power of the χ
2
 test increases with the size of p1−p2, 



but, in a given population, this difference is fixed and therefore not influenced by choosing 

either a population-based or cohort design. Similarly, near the null hypothesis, p=p1=p2 is 

also fixed. The variance term is, however, affected by the design through the term 

[(1/n1)+(1/n2)]=n/n1n2. As this term decreases, the precision of our estimate increases, 

and the χ
2
 test statistic also increases. With the total sample size n fixed, n/n1n2 is minimized 

when n1n2 is maximized, which occurs when n1=n2=n/2. From this we can infer that, for a 

cohort design with fixed sample size n, the best sample size allocation, in terms of statistical 

power of the χ
2
 test, is to take n1=n2=n/2. Further, since the sample sizes of Es and Es are 

random in a population-based design, they will be essentially determined by the population 

P(E), and will almost always be unequal, even if P(E)=0.5. Hence, for large samples, a 

population-based design always yields a less powerful χ
2
 test than a cohort design with equal 

sample sizes of Es and Es. 

By the same token, comparison of the case-control design to the population-based design can 

be considered in terms of p1−p2, where now p1=P(E|D) and According to the 

logic of the last paragraph, the most powerful choice of sample sizes for the case-control 

design is n1=n2=n/2, where n1 and n2 are now the sample sizes for the Ds and 

respectively. And, if equal (large) sample sizes of cases and controls are used, the case-

control design always leads to a more powerful χ
2
 test than a population-based design of the 

same population. 

Finally, the cohort and case-control designs are compared, assuming that both use the optimal 

equal allocation of the overall sample size to their respective two random samples. This 

removes the influence of sample size so that differences in power now depend solely on the 

expected value of the part of the χ
2
 statistic given by where 

since n1=n2. In large samples, this expectation is approximately 

where for cohort designs p1=P(D|E), etc., and for case-control 

designs p1=P(E|D), etc., and in either design p=(p1+p2)/2. The power of the χ
2
 test will be 

greater when d is larger, and this scaled difference grows as the average of p1 and p2, that is, 

p, gets closer to 0.5. Figure 6.1 illustrates this graphically for three different population Odds 

Ratios. Thus, in comparing a cohort to a case-control design, the greater power will belong to 

the design for which the average, p, of the relevant conditional probabilities lies closer to 0.5. 

That is, if is nearer to 0.5 than then the case-

control design will have higher power than the cohort design for any population Odds Ratio 

that differs from 1, and vice versa. With n1=n2, P(E) closer to 0.5 than P(D) implies that 

is nearer to 0.5 than and that therefore the case-

control design is more powerful with large samples; when P(E) is closer to 0.5 than P(D), the 

converse of this statement is true by the same reasoning.  

In summary, we have learned that for large samples, 

• In a cohort design with a fixed sample size, the χ
2
 test of independence is most powerful 

when the exposed and unexposed samples are of equal size. 

• A cohort design with equal samples of exposed and unexposed yields a more powerful χ
2
 

test of independence than a population-based study with the same overall sample size. 

• In a case-control design with a fixed sample size, the χ
2
 test of independence is most 

powerful when the case and control samples are of equal size. 



• A case-control design with equal samples of cases and controls yields a more powerful χ
2
 

test of independence than a population-based study with the same overall sample size. 

• When P(E) is closer to 0.5 than P(D), the case-control design with equal samples of cases 

and controls will give a more powerful χ
2
 test of independence than the cohort design with 

equal numbers of exposed and unexposed. 

• When P(D) is closer to 0.5 than P(E) then the cohort design with equal numbers of exposed 

and unexposed will give a more powerful χ
2
 test of independence than the case-control design 

with equal samples of cases and controls. 

These conditions all point to greater power being achieved when both disease and exposure 

marginal frequencies are closer to being balanced. In either a cohort or case-control study, 

one marginal can be exactly balanced by design, and the relative size of P(D) and P(E) in the 

population determines whether greater balance can be gained in the other marginal by one 

design or the other. Let us now look back at Tables 6.2 to 6.4 to observe how marginal 

balance differences explain the comparison of the χ
2
 test statistics of Table 6.5. The exposure 

(marital status) marginal is exactly balanced in Table 6.3, and the outcome (birthweight) 

marginal is slightly better than in Table 6.2 from a population-based design. The power gain 

from the cohort design here arises solely from the sample allocation term of the χ
2
 test 

statistic, namely n/n1n2, which is 0.02 for any cohort design with n1=n2=100, and 0.024 

(=200/59×141) for the specific population-based outcome of Table 6.2, indicating that we can 

expect the slight increase in power reflected in Table 6.5. With completely balanced cohort 

and case-control designs, the differences in power are entirely due to variation in d, as 

discussed above. For the cohort design, d=0.240 (with p1=P(D|E)=0.12 and 

whereas, for the case-control design, d=0.352 (with P1=P(E|D)=0.5 

and This confirms that we can anticipate a substantial increase in 

power by using a case-control design here, as we see in Table 6.5. 

Note that these power comparisons can change if you choose a case-control design or cohort 

design with unequal sample allocations. For example, even when P(D) is much smaller than 

P(E), it is possible that the case-control design will yield less power than the cohort design if 

you allocate the total sample poorly. Further, remember that increasing the total sample size 

will increase power for all designs (again assuming a sensible allocation of this sample size in 

both the case-control designs and cohort designs). Thus, even if the available sample size of 

cases is limited in a case-control design (say, to 100, for example), it still adds power if we 

sample more than 100 controls as compared to balancing the sample sizes at 100. The gain in 

power comes from the decline in the sample size factor, ssf=n/n1n2, as n increases, even 

though n1, the number of cases, stays fixed. If n2=kn1, say, then ssf=(k+1)/kn1. The relative 

size of ssf for k=1 compared to k>1 is R=2k/(k+1), with the value of R then reflecting the ratio 

of the sample size factor with k controls per case to that with one control per case. Figure 6.2 

plots R against k, the ratio of the number of controls to number of cases. With a fixed number 

of cases, the figure shows the growth in the sample size factor—and thus the power of the χ
2
 

test—as you increase the number of controls selected per case; however, as a rule of thumb, it 

is clear that you gain relatively little by adding extra controls, after you have four times as 

many controls as cases. The primary gain in power comes from increasing the number of 

controls per case from 1 to 4. 

 



2.3 Comments and further reading 

The power comparisons between the various designs, with resulting sample size implications 

given in Section 6.3.1, are appropriate at the null, that is, assuming independence between D 

and E. Different recommendations for sample size allocation are necessary when estimating a 

relationship away from the null. We return to this briefly in Chapter 7.1.1. Also, note that the 

χ
2
 test is not immediately applicable  

Figure 6.2 Relative size of sample size factor, R, compared to the ratio of number of controls 

to cases, k, for a case-control design. 

to case-control data with risk-set sampling except under restrictive conditions. For a case-

cohort design, the χ
2
 test of independence can be directly applied, not to the data as 

represented in Table 5.7, but to the version where the cohort sample is modified by removal 

of any cases. 

2.3.1 Alternative formulations of the χ2test statistic 

For population-based designs, the a entry in Table 6.1 is a random variable with expectation 

E(a)=nP(D&E). Be careful not to confuse “Expectation” and “Exposure.” If independence of 

D and E is assumed, then E(a)=nP(D)P(E). Similar formulae can be developed for the b, c, 

and d entries. It is then easy to show that the χ
2
 statistic can also be written as 

 

(6.1) 

where i and j index the four cells of the 2×2 tables so that O11=a etc., and Eij denotes the 

estimated expectation of the relevant cell under the assumption of independence. That is, E11 

is the estimate of E(a)=nP(D)P(E) given by E11= n[(a+b/n)(a+c/n)]. Equation 6.1 also holds 

under both cohort and case-control sampling schemes. 

Yet another derivation of the χ
2
 test for independence can be based on the following 

argument. Very little, if any information, about the relationship between D and E can be 

gleaned from the marginal entries of Table 6.1, that is, the row and column totals. It is the 

“interior” entries of the table that tell us about the strength of association of D and E. We may 

as well then assume that the marginal totals are fixed at their observed values, and then try to 

determine whether the a, b, c, and d entries suggest possible independence or otherwise. With 

fixed marginal totals, analysis of the data from any of the three designs is then identical 

(although, of course, the different designs will generate different marginals which have power 

implications as we have seen). Further, if the marginals are fixed, only one piece of 

information remains random within Table 6.1; that is, if we treat a as a random variable, the 

other entries, b, c, and d, are all determined once a is known. Thus, questions about the 

relationship between D and E can all be couched in terms of the properties of the random 

variable a once we assume that the marginal's are fixed and known. In fact, the random 

variable a then follows what is known as the non-central hypergeometric distribution, 

parameters of which are determined by the known marginal totals and the unknown 

population Odds Ratio. In the special case of independence of D and E, this distribution 

simplifies and is known simply as the hypergeometric distribution. With independence 



assumed, the expectation and variance of a can be simply described in terms of the marginal 

totals; specifically, E(a)=(a+b)(a+c)/n, and Var(a)=(a+b)(c+d)(a+c)(b+d)/n
2
(n−1). When n 

is large, the hypergeometric distribution is well approximated by a Normal distribution with 

the same expectation and variance. Thus under the null hypothesis, , of independence, the 

random variable should approximately follow a standard Normal 

distribution, or equivalently, (a−E(a))
2
/Var(a) is approximately This then provides the 

basis for a test of independence of D and E. In fact, the test statistic, (a−E(a))
2
/Var(a), differs 

from the χ
2
 statistic, n(ad−bc)

2
/(a+b)(c+d)(a+c)(b+d), only in that the term n in the 

numerator is replaced by (n−1). This is irrelevant when n is large, and the two approaches 

will then give almost identical results. However, this difference between n and (n−1) in these 

two versions of the χ
2
 statistic will have important implications when we study the 

combination of many 2×2 tables with small sample sizes in Chapters 9 and 16. 

2.3.2 When is the sample size too small to do a χ2test? 

In discussing the χ
2
 test of independence of D and E, we frequently referred to “large” 

samples or “large” n in order to invoke the approximation of the sampling distribution of the 

test statistic by the distribution. Just how large does n have to be? In fact, the quality of 

the approximation does not depend solely on n; extensive examination has determined that it 

is accurate so long as the expectation (assuming independence) of each entry inside Table 6.1 

is greater than 1 (Larntz, 1978). We can check this by using estimates of these expectations 

for each entry in the 2×2 table; that is, by examining whether (a+b)(a+c)/n is greater than 1 

for the a entry, and so on. For example, Tables 6.2 to 6.4 meet these criteria easily. 

The exact sampling distribution of cell entries can be used to construct a test of independence 

when the sample size is so small that use of the approximating distribution is 

questionable. With the assumption of fixed marginals, the relevant exact distribution is the 

hypergeometric as noted in Section 6.4.1, whose use as the null sampling distribution of a 

leads to the Fisher exact test. Further discussion of this test can be found in either Fleiss 

(1981) or Breslow and Day (1980). For either cohort or case-control designs, an alternative 

exact test is based on the binomial distributions for each of the two samples generated by the 

design. This exact test has somewhat greater power than Fisher’s exact test (D’Agostino et 

al., 1988). The widespread availability of such exact tests precludes the need to use a 

continuity correction to improve the adequacy of the χ
2
 approximation; if we face a 2×2 table 

where use of the continuity correction makes a noticeable difference, then proceed with an 

appropriate exact test and avoid use of the χ
2
 test altogether. 

For case-cohort data, the sample Odds Ratio can be used to estimate the Relative Risk 

although the variance estimate in Section 7.1.2 is generally incorrect because of possible 

overlap between cases and controls—that is, the possibility that the control group contains 

individuals who are subsequently sampled as cases. While correcting the variance estimate is 

straightforward, Sato (1992a) describes a modified estimator of the Odds Ratio that takes into 

account the information in the overlapping group to improve precision (a slightly different 

estimator is relevant if one knows the size of, and the number if cases in, the larger cohort 

from which the case-cohort data was sampled (Prentice, 1986; Sato, 1992a). If there is very 

little overlap, these modifications can be ignored and the methods of this chapter directly 

applied, although this essentially returns us to the rare disease setting. In addition, if the 

“overlapping” cases are removed from the cohort sample, the methods of Section 7.1 directly 

apply to estimation of the Odds Ratio as for traditional case-control studies. 



Conclusion 

In this study, we have considered quantifying uncertainty in a study of a particular design and 

sample size(s). Turning these techniques on their heads, we can determine the size of the 

sample(s) required to achieve a given level of precision for a specific design. Such 

calculations are referred to as sample size planning. There is a substantial literature on this 

topic, and we refer to Schlesselman (1982) and Greenland (1988) as good places to start. 

There are also chapters on this topic in many other books including Woodward (1999) and 

Newman (2001). For a straightforward introduction and review, see Liu (2000). I find sample 

size computations somewhat artificial. Usually, available resources for a study are 

constrained, and sample size calculations are often used to justify the value of a study, given 

fixed resources, as compared with precision assessment driving appropriate fund allocations. 

Further, sample size planning rarely accounts for all sources of error, some of which may be a 

far greater threat than sampling variability. For example, it may be more effective to expend a 

greater fraction of resources ensuring the quality of measurement of exposure and disease 

than to merely increase the sample size for a study with inaccurate data. It is particularly 

dangerous to blindly resort to sample size tables without fully understanding the statistical 

nuances of a planned design and analysis strategy. 

As indicated at the beginning of Chapter 2, we have been assuming exact measurement of 

both disease and exposure so far, particularly in this chapter. However, bias introduced by 

both systematic and random errors in measurement of these quantities leads often to, far 

greater distortion of a disease-exposure association than is introduced by sampling. Thus, any 

epidemiological study must assess the possible impact of measurement error before drawing 

definitive conclusions. Even relatively small amounts of measurement error can have major 

effects on estimation of a measure of association. The direction of the association can be 

reversed, as is easily seen if we imagine.  
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